Stormwater Green Infrastructure: Evaluation, Performance and Modeling

Fouad H. Jaber, PhD, PE

Associate Professor and Extension Specialist Biological and Agricultural Engineering Texas A&M AgriLife Extension Dallas Research and Extension Center

Urban vs. Natural

Eutrophication

- Impacts due to urbanization:
 - Impact to aquatic habitat: Degradation of habitat structure, loss of pool-riffle structure, reduction in base flow, increased stream temperature, and decline in abundance and biodiversity.

Fish kill at Lake Granbury.

Urban BMPs

- Rain gardenbioretention areas
- Porous pavements
- Green roofs
- Rainwater harvesting

Evaluation Project in Dallas

Five LID BMPs were built on the campus of Texas AgriLife Research and Extension, Dallas. The grant is funded by the Clean Water Act Section 319 urban nonpoint source pollution prevention program (TCEQ; EPA)

BMPs

Permeable pavement

- Bioretention area
- Rainwater harvesting
- Green roof
- Detention Pond

Monitoring for hydrology, N, P, TSS, bacteria, legacy pollutant Chlordane

Project Location

Upper Trinity-White Rock Creek Watershed

Clayey soil with underlying calcareous layer (Blackland Prairie Ecosystem)

Representative of typical urban watershed

Rationale and Goals

- Need for evaluation of LID practices in the field, especially Southern US and/or Blackland soils.
- Need for data on adoption of LID practices on watershed scale
- Goals
 - Reduction of runoff volume, pollutant load in a typical urban development
 - Design, construction, evaluation of 5 LID BMPs
 - Teaching tool for integration of LID practices (de novo or retrofit)

BMP Locations

Bioretention Design

- Collected from 37,000 square foot parking lot CN=94
- Include Internal Water Storage (IWS)
- Total Media Depth was 4 feet with 1.75 feet ponding depth
- Media: 25% yard waste compost, 50% sand, 25% native soil
- Planted with native plants
- 4 inch perforated pipe at bottom

Bioretention Area

Monitoring Design

Water Volume

- Inflow: Flume and bubbler flowmeter
- Outflow: pipe and bubbler flowmeter
- Storage: Levelogger[®]
- Water Quality
 - Inflow: ISCO Sampler
 - Outflow: ISCO Sampler

Volume Reduction

Load Reduction: Nitrate

Load Reduction: Orthophosphate

Load Reduction: Sediments

Load Reduction: E. coli

Permeable Pavement

- Newly constructed parking lot
- Comparison of 5 types pavement
- 25 experimental stalls among 52 total functional stalls
- Perforated underdrain pipes
- Total thickness = 14 inches
- Gravel layer
- Hydrologically separated with concrete curbs

Design and Monitoring

- Stalls: 18'x10'
- ISCO samplers with bubbler flow meters
- Runoff quantity and quality is measured

Pervious Concrete Cross Section

Results: Volume

Volume Reduction Rates

	PICP	Pervious Concrete	Grass Pavers	Gravel Pavers
Reduction Rate	71%	74%	78%	93%

Results: Water Quality

	Control (mg)	Grass Pave (mg)	Grass Pave % reduction	ICP (mg)	% reduction
NO3	221.98	857.55	-286%	654.27	-195%
NH4	272.07	173.43	36%	60.64	78%
ТКМ	2327.54	1760.51	24%	1023.3	56%
Orthophosphate	2.46	12.08	-391%	20.84	-747%
Total Phosphorus	53.66	85.37	-59%	107.87	-101%
TSS	59833.46	9648.71	84%	32306	48%

TSS Reduction in Per Conc:57%in Gravel pavers:48%

Results

- Percent contribution other than TSS appeared high because of the minute amounts found in the control runoff
- Nitrate and orthophosphate concentrations were still low in general from all treatments.
- Permeable pavement is constructed to collect runoff from paved areas with a minimum amount of soluble chemicals in the water and TSS is the major target pollutant.

Green Roofs in North Texas

Experimental Component

- 4 roof shelters, represent residential roofs
- Each divided into 4 parts, with 4 types of growing media
- Different layers of soil, drainage, insulation, roofing membrane
- Runoff volume, water quality

Growth Medium

- Selected based on location, wind, rainfall, air pollution, height of the building, shade and soil depth.
- Roof microclimate can be extreme, requiring hardy plants, adapted to the local climate.
- drought tolerant, have a growth pattern that covers the soil, have very low need for maintenance such as fertilizers, insecticide, herbicides, mowing or trimming, be perennial or self-sowing and be fire resistant

Volume Reduction

				н		S		SD
	Rainfal			reductio		reductio		Reductio
Event	1 I.	С	н	n	S	n	SD	n
Date	inches	gals	gals	%	gals	%	gals	%
12/28/12	1.52	13.04	8.67	33.51%	8.40	35.58%	8.62	33.90%
01/10/13	2.61	39.13	25.67	34.40%	23.13	40.89%	28.15	28.06%
02/11/13	0.9	8.40	5.13	38.93%	5.19	38.24%	2.18	74.05%
03/11/13	1.67	19.71	7.02	64.38%	12.51	36.53%	6.31	67.99%
04/01/13	0.84	2.71	0.00	100.00%	0.00	100.00%	0.00	100.00%
04/04/13	0.84	3.51	1.30	62.96%	1.29	63.25%	1.29	63.11%
04/18/13	0.87	6.96	0.70	89.94%	0.00	100.00%	1.18	83.05%
05/16/13	1.96	24.61	5.62	77.16%	2.63	89.31%	7.32	70.26%
05/22/13	0.89	4.25	0.10	97.67%	0.00	0.00%	0.36	91.53%
06/10/13	1.08	7.73	2.42	68.69%	1.18	84.73%	0.67	91.33%
06/17/13	0.67	0.80	0.00	100.00%	0.00	100.00%	0.00	100.00%
07/11/13	0.72	1.72	0.00	100.00%	0.00	100.00%	0.30	82.53%
07/17/13	1.12	9.27	4.07	56.09%	1.60	82.74%	2.86	69.19%
09/21/13	1.93	7.44	5.37	27.82%	1.12	84.95%	2.66	64.25%
10/16/13	1.88	7.26	3.25	55.23%	5.78	20.39%	3.6	50.41%
10/27/13	1.24	5.25	4.43	15.62%	4.25	19.05%	2.83	46.10%
11/05/13	1.08	5.55	2.54	54.23%	0.04	99.28%	2.24	59.64%
11/26/13	1.22	3.89	0.53	86.38%	1	74.29%	0	100.00%
12/21/13	1.42	7.02	4.19	40.31%	4.4	37.32%	6.96	0.85%

Volume Reduction

				H		S		SD
	Rainfal			reductio		reductio		Reductio
Event	1.0	С	н	n	S	n	SD	n
Date	inches	gals	gals	%	gals	%	gals	%
05/09/14	Total	Volum	е	65.39	%	76.05	%	75.33
05/12/14	Redu	ction f	com C					%
06/09/14								
07/03/14	0.82	5	3.4	0.32	0.17	0.97	0.17	0.97
07/17/14	0.89	6.7	1.47	0.78	0.1	0.99	2	0.70
07/31/14	1.01	7.7	6.1	0.21	0.24	0.97	1.18	0.85
08/06/14	0.56	2.7	0	1.00	0	1.00	0.29	0.89
08/17/14	0.83	4.7	1.18	0.75	0	1.00	0.29	0.94
10/06/14	1.37	15.8	5.54	0.65	2.47	0.84	4.1	0.74
10/13/14	1.54	22	11.9	0.46	8.7	0.60	9.3	0.58
10/13/14	1.54	22	11.9	0.46	8.7	0.60	9.3	0.58
11/05/14	1.13	9.02	0.17	0.98	0.35	0.96	0.29	0.97
11/23/14	0.51	2.5	0	1.00	0	1.00	0	1.00
12/23/14	0.53	3.89	0.59	0.85	0.35	0.91	0	1.00
01/12/15	0.63	4.5	0.66	0.85	2.4	0.47	0.94	0.79
01/23/15	1.17	7.58	3.56	0.53	3.63	0.52	3.28	0.57
02/02/15	0.72	35.7	25	0.30	1.12	0.97	0	1.00
02/25/15	2.22	15.58	8.63	0.45	1.36	0.91	5.66	0.64
03/06/15	1.1	2.36	0	1.00	1.35	0.43	0.17	0.93

E. Coli counts

Nitrate Loads

Orthophosphate Loads

TSS Loads

Rainwater Harvesting

Demonstration Component

- Four cisterns (300, 500, 1500, and 2500 gallon) that serve AgriLife Buildings
- Storage and outflow measured
- Serves a drip irrigation system
- Experimental Component
 - 4 roof shelters, represent residential roofs, 55 gallon tanks(3/plot)
 - Turf lawn associated with each, drip irrigation
 - 4 Treatments- Soil moisture, Evapotranspiration, Home owner (rain water), Control: Home owner (city water)
 - Inflow, outflow, water quality

Experimental plot layout

Time Based Irrigation

Month	Frequency of irrigation
Jan–Feb	Biweekly
March	Weekly
April–May	Once every 3 days
Jun-Aug	Daily
Sep	Once every 2 days
Oct	Weekly
Nov-Dec	Biweekly

Soil moisture based irrigation

	Saturation	
↑.		Ŷ
Deep percolation (F)		Deep percolation (F)
^	Field Capacity (F.C)	¥
 Total Available	Maximum water content for irrigation	
water content (TAWC)	(IWC _{max})	Allowable depletion (AD)
	Minimum water content — for irrigation (IWC _{min})	
*	Permanent wilting point	
↑ .	(PWP)	
Hygroscopic water		
1	Oven dry	

ET-based Irrigation

For ET-based irrigation treatment, four steps were done to estimate volume of water applied. First, published ET data and crop coefficients were utilized to calculate daily irrigation requirements (ETc):

where:

$$ETc = ET_0 \times Kc \tag{18}$$

ET_c crop evapotranspiration

ET_o rate of evapotranspiration from a reference surface that is not short of water

Runoff from time based

Runoff from ET-based

Water Savings from RWH

Water Savings Soil Moisture

BIOLOGICAL & AGRICULTURAL ENGINEERING TEXAS A&M UNIVERSITY

Is high density development an LID practice? A modeling study

Fouad H. Jaber and Mijin Seo

Urban Land Uses (1. UHD)

Compact high-density urban design

A heavily developed area and maximized site perviousness

→5% of total area (0.28 FAR)

Residential

16% of total area (10 units/ac)

Land		Urban design	Urban ratio	Impervious/pervious fraction (in %)		
	use			Residential	Commercial	
	UHD	Compact urban form with high density	21%	61/39	68/32	
	UMD	Conventional urban form with medium density	56%	44/56	75/25	
	UMC	Conservational urban form with medium density	56%	41/59	68/32	

Source of designs: League City, designed by Edminster, Hinshaw, Russ and Associates, Inc. (EHRA)

Urban Land Uses (2. UMD)

Land use		Urban design	Urban ratio	Impervious/pervious fraction (in %)		
				Residential	Commercial	
	UHD	Compact urban form with high density	21%	61/39	68/32	
	UMD	Conventional urban form with medium density	56%	44/56	75/25	
	UMC	Conservational urban form with medium density	56%	41/59	68/32	

Source of designs: League City, designed by Edminster, Hinshaw, Russ and Associates, Inc. (EHRA)

Urban Land Uses (3. UMC)

Conservational medium-density urban design Commercial Include conservational areas under the same base format with conventional urban form Residential GROSS OPEN SPACE >5% of total area Residential (0.23 FAR) 5.75 AC. GROSS OPEN SPACE 2 51% of total area Residential (3 units/ac) 3.45 AC. OSS OPEN SPACE GROSS OPEN SPACE 5.88 AC. GROSS OPEN SPACE

Land		Urban design	Urban ratio	Impervious/pervious fraction (in %)		
	use			Residential	Commercial	
	UHD	Compact urban form with high density	21%	61/39	68/32	
	UMD	Conventional urban form with medium density	56%	44/56	75/25	
	UMC	Conservational urban form with medium density	56%	41/59	68/32	

Source of designs: League City, designed by Edminster, Hinshaw, Russ and Associates, Inc. (EHRA)

Post-LIDs results

Final result values

	SURQ (mm)	NO	тр	Difference (% reduction)			
Scenario		(kg)	(kg)	SURQ (mm)	NO ₃ (kg)	TP (kg)	
UHD	374.66	430.92	431.64	52.97	101.37	46.45	
UHDLIDs	321.69	329.55	385.19	(14%)	(24%)	(11%)	
UMD	473.32	591.87	449.55	135.51	186.03	110.69	
UMDLIDs	337.81	405.85	338.86	(29%)	(31%)	(25%)	
UMC	462.73	577.19	443.46	117.80	170.51	97.43	
UMCLIDs	344.93	406.68	346.03	(25%)	(30%)	(22%)	

- SURQ: UMCLIDs > UMDLIDs > UHDLIDs
- NO₃ : UMCLIDs > UMDLIDs > UHDLIDs
- TP : UHDLIDs > UMCLIDs > UMDLIDs

BIOLOGICAL & AGRICULTURAL ENGINEERING TEXAS A&M UNIVERSITY

Modeling LID Effect Practices on Stream Health

Fouad H. Jaber, PhD Associate Professor and Extension Specialist Sa'd Shannak, PhD Former Graduate Student Currently at KAPSARC

BLUNN CREEK WATERSHED- AN OVERVIEW

Results of LID on Shear Stress

Reduction in flooding due to LID

Reduction of Peak Flow

Combining bioretention area with permeable pavement resulted with the greatest percentage of AQP value increase, followed by RG only, PP and DP

Greatest increase in baseflow resulted when combining bioretention area with permeable, followed by RG only, PP and lastly DP

Acknowledgements

- This research was made possible by a CWA 319 (h) NPS grant provided by USEPA and TCEQ
- Texas AgriLife Research for providing funds and the location for the constructed BMPs.
- Modeling studies funded by Texas Sea Grant, USEPA, TCEQ and the City of League City, TX

TEXAS A&M GRILIFE RESEARCH | EXTENSION

Fouad H. Jaber, PhD, PE Associate Professor and Extension Specialist Biological and Agricultural Engineering Texas A&M AgriLife Extension Dallas Research and Extension Center f-jaber@tamu.edu 972-952-9672

www.facebook.com/agrilifeecoeng/